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Abstract: This paper addresses a basic inquiry into the connectivity of fuzzy ma-
troids, a fundamental concept with wide-ranging applications. Our contribution
involves introducing an innovative equivalence relation derived from graphic fuzzy
matroids. We rigorously define the connectivity of graphic fuzzy matroids using
equivalence classes, providing a clear and precise characterization of their connect-
edness. Throughout the analysis, we highlight several essential properties of this
connectivity concept, supplementing our discussion with illuminating examples.
We present three practical applications showcasing the significance of connected
graphic fuzzy matroids in diverse fields. In social network analysis, our findings
offer valuable insights into the structure and connectivity of complex networks. In
environmental reliability monitoring, connected graphic fuzzy matroids serve as a
powerful tool for assessing and ensuring the reliability of environmental systems.
In the context of geographic information systems, our research contributes to the
enhancement of spatial connectivity analysis.
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1. Introduction

The exploration of connectivity within the realm of fuzzy matroids stands as a
pivotal endeavor, given the fundamental role that connectivity plays in the prac-
tical applications of these mathematical structures. Connectivity, a cornerstone
concept, not only enriches the theoretical understanding of fuzzy matroids but also
holds significant implications for their real-world utility. Building upon our prior
investigations into graphic fuzzy matroids, this paper extends our inquiry to delve
into the nuanced aspects of connectivity within this specific class of fuzzy matroids.

In the pursuit of understanding connectivity in graphic fuzzy matroids, we in-
troduce an essential equivalence relation, establishing a framework that facilitates
the systematic analysis of connectivity. The utilization of equivalence classes serves
as a key tool in our exploration, allowing for a nuanced examination of the inter-
relationships within graphic fuzzy matroids.

Our investigation introduces a pioneering approach to analyzing connectivity
in graphic fuzzy matroids, leveraging an equivalence relation derived from these
structures. This novel method not only extends the theoretical foundations of fuzzy
matroid theory but also provides a fresh perspective on the interplay between graph
theory and matroid theory. This innovation equips us to navigate the intricacies of
graphic fuzzy matroids more effectively, promising a more nuanced understanding
of their connectivity properties.

Furthermore, the significance of our study extends beyond theoretical advance-
ments. The practical relevance of connected graphic fuzzy matroids unfolds in
three distinct applications such as this study provides a powerful tool for unrav-
eling connectivity patterns in social networks, offering insights into relationship
dynamics and network structures within fuzzy environments, facilitates a nuanced
understanding of connectivity, aiding in the design of robust monitoring systems
for environmental processes and the application of connected graphic fuzzy ma-
troids in GIS enhances spatial analysis, enabling a more sophisticated examination
of connectivity in geographic datasets with fuzzy attributes.

The motivation for this study stems from the increasing need for a comprehen-
sive understanding of connectivity within the nuanced framework of graphic fuzzy
matroids. As these structures find applications in diverse fields, ranging from net-
work design to combinatorial optimization, a robust exploration of connectivity
becomes indispensable. However, the current body of research lacks a systematic
and comprehensive analysis of connectivity tailored specifically to graphic fuzzy
matroids. This lacuna hampers the broader applicability and effectiveness of exist-
ing methodologies in addressing the unique challenges posed by fuzzy uncertainty
in these structures.
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This paper seeks to fill this critical gap by presenting a rigorous investigation
into the connectivity of graphic fuzzy matroids. Our primary objective is to pro-
vide a methodological framework that not only addresses the limitations of current
approaches but also enhances the theoretical and practical understanding of con-
nectivity within this specific class of fuzzy matroids.

The existing body of research, while rich in insights, falls short in its tailored
treatment of graphic fuzzy matroids. Current methodologies often overlook the
intricate interplay between fuzzy set theory and matroid structures, limiting their
efficacy in capturing the nuanced connectivity properties of graphic fuzzy matroids.

By elucidating the motivation, problem statement, objective, gap in existing
research, and the novelty of our conducted research, we aim to set the stage for a
comprehensive exploration into the connectivity of graphic fuzzy matroids in the
subsequent sections of this paper.

2. Preliminaries
The concept of matroids was first proposed by Whitney in 1935 as a general-

ization of both graphs and linear independence in vector spaces. Matroid theory
can be applied in some combinatorial optimization problems as an abstract gen-
eralization of a graph and a matrix. Graphic matroids form a fundamental class
of matroids, there has been a focus of active research during the last few decades.
Matroids were generalized to fuzzy fields by Goetschel and Voxman [5] using the
notion of fuzzy independent set.Their works on the fuzzification of matroids pre-
serves many basic properties of (crisp) matroids. From then on, fuzzy bases, fuzzy
circuits, fuzzy rank functions and fuzzy closure operators are widely studied [[5] -
[6]].

Definition 1. [8] A Matroid M is an ordered pair (E, I) consisting of a finite set
E and a collection I of subsets of E satisfying the following three conditions:

i. ϕ ∈ I

ii. If A ∈ I and A
′ ⊆ A, then A

′ ∈ I

iii. If A1 and A2 are in I and |A1| < |A2|, then there is an element e of A2 −A1

such that A1 ∪ e ∈ I

The members of I are the independent sets of M , the subsets of E which are not
members of I are the dependent sets of M and E is the ground set of M .

Definition 2. [8] Let E1 and E2 be two finite sets. Suppose that M1 = (E1, I1)
and M2 = (E2, I2) are two matroids. M1 and M2 are isomorphic if there exists a
mapping ψ : E1 −→ E2 such that ψ satisfies the following conditions:
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i. ψ is a one-to-one correspondence,

ii. For each X ⊆ E1, X ∈ I1 if and only if ψ(X) ∈ I2,

denoted by M1
∼= M2. The mapping ψ s called an isomorphic mapping from M1 to

M2.
The matroid derived from a graph G is called the cycle matroid or polygon

matroid of G, denoted by M(G). Clearly a set X of edges is independent in M(G)
if and only if X does not contain the edge set of a cycle.
A matroid that is isomorphic to the cycle matroid of a graph is called graphic
matroid.

Geotschel and Voxman generated the concept of fuzzy matroids as follows.

Definition 3. [5] Suppose that E is a finite set and that I ⊆ F (E) is a nonempty
family of fuzzy sets satisfying:

i. (Hereditary property) If µ(x) ∈ I , ν ∈ F (E), and ν < µ, then ν ∈ I

ii. ( Exchange property) If µ, ν ∈ I and |supp µ| < |supp ν|, then there exists
ω ∈ I such that

a. µ < ω < µ ∨ ν
b. m(ω) ≥ min{m(µ),m(ν)}.

Then the pair M = (E,I ) is a fuzzy matroid on E, and I is the family of
independent fuzzy sets of µ .

Theorem 1. [5] Let M = (E,I ) be a fuzzy matroid, and for each r,
0 < r ⩽ 1, let

Ir = {Cr(µ) | µ ∈ I }.

Then for each r, 0 < r ⩽ 1, Mr = (E, Ir) is a (crisp) matroid on E.
O.K Shabna and K. Sameena invented the concept of graphic fuzzy matroids

in [17] as follows.

Theorem 2. [17] Let G = (V, σ, µ) be a fuzzy graph with corresponding graph
G∗ = (V,E). For each r, 0 < r ≤ 1, let

Er = {e ∈ E | µ(e) ≥ r}
Fr = {F | F is a forest in the (crisp)graph (V,Er)}
Er = {E(F ) | F ∈ Fr}, where E(F ) is the edge set of F.
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If

I = {µ ∈ F (E) | Cr(µ) ∈ Er for each r, 0 < r ≤ 1 }

then, (E,I ) is a fuzzy matroid and is named as graphic fuzzy matroid.
Muhammad Akram and Fariha Zafar generalized the concept of connectivity of

fuzzy graphs to rough fuzzy digraphs (RFDs) [13].

Definition 4. [13] Let U be a universe and R an equivalence relation on U .
Let X ∈ F (U), where F (U) represents the fuzzy power set. The lower and upper
approximations of the fuzzy set X, represented by RX and RX, respectively, are
characterized by fuzzy sets in U such that, for all x0 ∈ U ,

(RX) (x0) = ∧
z0∈U

((1−R (x0, z0)) ∨X (z0)) ,(
RX

)
(x0) = ∨

z0∈U
(R (x0, z0) ∧X (z0))

The pair RX = (RX,RX) is called a rough fuzzy set.

Definition 5. [13] A rough fuzzy digraph on a nonempty set X∗ is an 4-ordered
tuple G = (R,RX,S,SY ) such that

i. R is s an equivalence relation on X∗,

ii. S is an equivalence relation on Y ∗ ⊆ X∗ ×X∗,

iii. RX = (RX,RX is a rough fuzzy set on X∗,

iv. SY = (SY, SY is a rough fuzzy set on Y ∗,

v. (RX,SY ) is a fuzzy digraph, where

G = (RX,SY ) and G = (RX,SY ) are lower and upper approximate fuzzy digraphs
of G such that

(SY )(z0z1) ≤ min{(RX)(z0), (RX(z1))},
(SY )(z0z1) ≤ min{(RX)(z0), (RX(z1))},

∀z0, z1 ∈ X∗

Definition 6. [13] The strength of connectedness between vertices z0 and z1
in a Fuzzy digraph G is defined as the strength of connectedness from z0 to z1
and strength of connectedness from z1 to z0 and denoted by CONNG(z0, z1) and



338 South East Asian J. of Mathematics and Mathematical Sciences

CONNG(z1, z0), respectively. CONNG(z0, z1) is equal to the maximum of strengths
of all the paths from z0 to z1. Also, CONNG(z0, z1) ̸= CONNG(z1, z0) .

Muhammad Akram Et al. discussed the connectivity parameters of m-polar
fuzzy graphs in [15].

Definition 7. [15] Let G = (µ, σ) be a non-trivial connected m-Polar Fuzzy graph.
The m-polar fuzzy vertex connectivity of G is denoted by κ(G) = (P1κ(G), P2

κ(G), ..., Pmκ(G)) in which each j-th (1 ≤ j ≤ m) is defined as Pjκ(G) = minPjSW (X)
; i ∈ ω, i.e., it is the minimum of strong weights of m-PF vertex cuts of G.

In [14], Muhammed Akram Et al. introduced the connectivity and average con-
nectivity indices of m-polar fuzzy graphs.

Definition 8. [14] Let G = (ζ, σ) be an m-Polar Fuzzy graph. The connectivity
index of G is denoted by CI(G) and is defined as CI(G) = (P1 ◦ CI(G), P2 ◦
CI(G), · · · , Pm ◦ CI(G)), where Pq ◦ CI(G) =

∑
w,z∈W Pq ◦ ζ(w)Pq ◦ ζ(z)Pq ◦

CONNG(w, z) for each 1 ≤ q ≤ m.

Proposition 1. [14] Let G = (ζ, σ) be an m-Polar Fuzzy graph and G = ζ, σ and
be an m-PF subgraph of G. Then for each 1 ≤ q ≤ m,Pq ◦ CI(G) ≤ Pq ◦ CI(G),
that is, CI(G) will be less than or equal to CI(G).

Definition 9. [14] Let G = (ζ, σ) be an m-Polar Fuzzy graph. The average
connectivity index of G is denoted by ACI(G) and is defned as ACI(G) = (P1 ◦
ACI(G)), P2◦ACI(G), · · · , (Pm◦ACI(G)), where P1◦ACI(G) =

1
nC2

∑
w,z∈W P1◦

ζ(w)P1 ◦ ζ(z)P1 ◦ CONNG(w, z) for each 1 ≤ q ≤ m.

3. Connectivity for Graphic Fuzzy Matroids

In this part, our focus now narrows down to the captivating domain of con-
nectivity within graphic fuzzy matroids. The inherent uncertainties characterizing
real-world networks are summarized through the lens of graphic fuzzy matroids,
where the strength of connections becomes a key aspect of analysis. We begin by
recalling the definition of connectedness for fuzzy graphs.

Let G = (V, σ) be a fuzzy graph, let x, y be two distinct vertices and let G
′

be the partial fuzzy subgraph of G obtained by deleting the edge xy. That is,
G

′
= (V, σ

′
), where µ

′
(xy) = 0 and µ

′
= µ for all other pairs. We call xy a fuzzy

bridge in G if µ
′∞(u, v) < µ∞(u, v) for some u, v in σ∗. Let w be any vertex and w

is a fuzzy cutvertex if deleting the vertex w reduces the strength of connectedness
between some other pair of vertices. Hence, w is a fuzzy cutvertex if and only if
there exists u, v distinct from w such that w is on every strongest path from u to v.
A partial fuzzy subgraph G

′
of G is called nonseparable or a block if it has no
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fuzzy cutvertices. Sometimes we refer to a block in a fuzzy graph as a fuzzy block.
A maximum spanning tree of a connected fuzzy graph (σ, µ) is a fuzzy

spanning subgraph T = (σ, ν) of G, which is a tree, such that µ∞(u, v) is the
strength of the unique strongest u− v path in T for all u, v ∈ G.

Theorem 3. [9] Let M = (E,I ) be a fuzzy matroid, e1, e2, e3 ∈ [0, 1]E and
µ, ν ∈ C (M ). If e1 ∨ e2 ≤ µ, e2 ∨ e3 ≤ ν and C (µ) ∩ C (ν) ̸= ϕ, then there is a
fuzzy circuit ω such that e1 ∨ e3 ≤ ω.

We now define a kind of connectedness in graphic fuzzy matroids and present
some useful properties of them.

Let M be a graphic fuzzy matroid. Define a relation ∼ on the fuzzy edge set
µ of the fuzzy graph G = (V, σ, µ) in such a way that, for any two fuzzy edges
ea, eb ∈ µ, ea ∼ eb if and only if either there is a fuzzy circuit C in C(M) containing
both ea and eb or ea = eb.

Proposition 2. The relation ∼ is an equivalence relation on σ.
Proof. Clearly ∼ is reflexive and symmetric. To show that ∼ is transitive, suppose
that ea, eb, ec ∈ [0, 1]E and µ, ν ∈ C(M) such that ea ∨ eb ≤ µ and eb ∨ ec ≤ ν.
Also, C(µ) ∩ C(ν) ̸= ϕ. Corresponding to the fuzzy circuits C(µ) and C(ν), there
is circuits C1 and C2, respectively, in the crisp matroid such that C1 ∩ C2 ̸= ϕ.
Assume that, C1 ∪ C2 is the minimal circuit in the collection of all such pairs of
circuits.
Claim: There is a fuzzy circuit C such that ea ∨ ec ≤ C.
Assume that there is no such a fuzzy circuit. Then obviously C(µ) ̸= C(ν) and
hence C1 ̸= C2. Choose an element α ∈ C(µ)∩C(ν). In the following Figure, given
a Venn diagram useful in keeping track of the rest of the proof.

By Theorem 3, M has a fuzzy circuit, let it be C(ω), such that ea ∈ C(ω) ≤
(C(µ) ∧ C(ν)) \ \α. It is clear that, by assumption, ec /∈ C(ω). As C(ω) ≰ C(µ),
there exists an element β of C(ν)\C(µ) that is in C(ω). Applying Theorem 3 to C(ν)
and C(ω), we find thatM has a fuzzy circuit Cζ such that ec ∈ Cζ < (C(ν)∨C(ω))−β.
Since Cζ ≮ C(ν), the fuzzy set Cζ ∧ (C(ω) − C(ν)) ̸= ϕ. Therefore Cζ ∧ C(µ) ̸= ϕ.
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But C(µ) ∨ Cζ ≤ (C(µ) ∨ C(ν)) − β and so | C1
⋃
C3 |<| C1

⋃
C2 |, where C3 is the

circuit in the crisp matroid corresponding to the fuzzy circuit C(ζ). Therefore the
pair (C1, C3) contradicts the choice of (C1, C2) because ea ∈ C(µ), ec ∈ C(ζ) and
C(µ) ∧ C(ζ) ̸= ϕ.

If there is only one equivalence class determined by this equivalence relation,
then we call M a connected graphic fuzzy matroid. Suppose that ν ∈ [0, 1]X .
If for every pair of fuzzy points xa, yb ≤ ν, there exists ω ∈ C(M) such that
xa, yb ≤ ω ≤ ν, then ν is said to be connected in M. We can obtain the following
as an immediate consequence of Proposition 1.

Proposition 3. Let M = (E,I ) be a graphic fuzzy matroid, then M is connected
if and only if for every pair of distinct fuzzy edges e1 and e2 of E(M), there is a
fuzzy circuit C ∈ C containing both e1 and e2.

The following result characterizes a connected graphic fuzzy matroid in terms
of connected crisp cyclic matroids.

Proposition 4. Let M = (E,I ) be a graphic fuzzy matroid, then M is connected
if the underlying cyclic matroid is connected.
Proof. Suppose that M is connected. Let ea, eb ∈ E with ea ̸= eb. Since M is
connected, there exists a fuzzy circuit µ ∈ C(M) satisfying ea ∨ eb ≤ µ. By lemma
2.4, µ[m(µ)] is a circuit in the cyclic matroid (E, τm(µ)). By definition of graphic
fuzzy matroids, µm(µ) is a circuit in the underlying cyclic matroid,let it be (E, τ).
Therefore (E, τ) is connected.

Conversely suppose (E, τ) is connected cyclic matroid. Let ea, eb ∈ [0, 1]E.
Since (E, τ) is connected, there exists a circuit C in (E, τ) containing the edges
corresponding to ea, eb. Let ω = χC , then ω ∈ C(M) and ea, eb ≤ ω, so M is
connected.

Example 1. Let G be the graph shown in the following figure. Then the cor-
responding cycle matroid is M = (E, τ), where E = {e1, e2, e3, e4} and τ =
2{e1, e3, e4} ∪ 2{e2, e3, e4} − {{e1, e3, e4}, {e2, e3, e4}}. Let

τa =


2E, if 0 < a ≤ 1

4

2{e1,e3,e4} ∪ 2{e2,e3,e4}, if
1

4
< a ≤ 3

4

τ,
3

4
< a ≤ 1

(1)

and I = {µ ∈ [0, 1]E | µ[a] ∈ τa, 0 < a ≤ 1}, then M = (E,I ) is a graphic fuzzy
matroid.
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Note that G in the figure is 2-connected, so the corresponding cycle matroid M is
connected. By proposition 2, M is connected.

Example 2. The table below enumerates various connected graphic fuzzy matroids
involving up to four fuzzy edges. In each instance, the fuzzy edges are assigned a
value of 1. In these specified fuzzy matroids, the independence of a set of edges
aligns with the concept of linearly independent spanning trees within the underlying
graph.

Number of fuzzy edges underlying fuzzy graph Connected fuzzy matroid
0 M = (E,I )

E = { }
I = { }

M1 = (E,I1)
E = {e1}

1 I1 = { }
M2 = (E,I2)
E = {e1}

I2 = {{e1}, { }}
M1 = (E,I1)
E = {e1, e2}

2 I1 = {{e1}, { }}
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Number of fuzzy edges underlying fuzzy graph Connected fuzzy matroid
M1 = (E,I1)
E = {e1, e2, e3}
I1 = {{e1}, ϕ}

3
M2 = (E,I2)
E = {e1, e2, e3}

I2 = {ϕ, {e1}, {e2}, {e2}, {e1, e2}}

M1 = (E,I1)
E = {e1, e2, e3, e4}

I1 = {{e1}, ϕ}

4
M1 = (E,I2)

E = {e1, e2, e3, e4}
I2 = [0, 1]E − {e1, e2, e3, e4}

4. Applications

4.1. Social Network Analysis
Imagine a social network where individuals are represented as nodes, and edges

correspond to friendships between individuals. However, the strength or quality of
these friendships is uncertain and is modeled using fuzzy values between 0 and 1.
Here’s how the fuzzy social interaction matroid could be defined:

Fuzzy Friendship Graph: Nodes represent individuals in a community, and
edges represent friendships.Each edge is associated with a fuzzy value indicating
the strength or closeness of the friendship. For example, a fuzzy value of 0.8 might
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indicate a strong friendship, while 0.3 might represent a weaker connection.

Independence in the Fuzzy Friendship Matroid: A set of friendships is con-
sidered independent if there are no cycles in the subgraph formed by those friend-
ships, and the sum of the fuzzy values along any cycle is less than or equal to 1.

Connectivity Aspect: The connected graphic fuzzy matroid explores how un-
certainties in the strengths of friendships influence the overall connectedness of the
social network. Higher fuzzy values contribute to a more connected network, while
lower fuzzy values may result in isolated clusters.

Dynamic Changes: The fuzzy values associated with edges can change over time,
representing the dynamic nature of friendships in the social network. The matroid
captures how these changes influence the evolving structure and connectivity of the
social interaction network.

4.2. Environmental Reliability Monitoring

In the context of environmental monitoring, envision a sensor network designed
to assess various environmental parameters. Each sensor, strategically placed in
the field, measures specific aspects such as temperature, humidity, and pollution
levels. However, the reliability of these measurements is subject to uncertainty,
modeled by fuzzy values ranging from 0 to 1.

Fuzzy Graph Representation: Nodes represent individual sensors deployed for
environmental monitoring. Edges symbolize communication links facilitating data
exchange between neighboring sensors. Fuzzy values are assigned to each sensor
reading, reflecting the reliability or confidence in the measurement.

Independence Criteria: A set of sensors is deemed independent if their mea-
surements align within a defined tolerance based on fuzzy compatibility. The fuzzy
matroid captures the intricacies of independence, considering uncertainties in sen-
sor readings.

Connectivity Exploration: The connected fuzzy sensor network matroid inves-
tigates how uncertainties in sensor readings influence the overall connectivity of the
network. Sensors with higher fuzzy reliability values contribute to a more inter-
connected network, whereas those with lower values may lead to isolated clusters.

Dynamic Adaptation: Fuzzy values associated with sensor readings are dy-
namic, capable of changing over time due to environmental fluctuations or sensor
malfunctions. The matroid provides insights into how these dynamic changes im-
pact the evolving structure and connectivity of the sensor network.
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4.3. Geographic Information System

Imagine a scenario where a fuzzy geometric matroid is applied to model un-
certainties in the spatial positioning of points in a geographic information system
(GIS). This matroid captures the fuzzy relationships among points with uncertain
coordinates.

Fuzzy Graph Formation Nodes represent geographical points in a GIS, each
with fuzzy values associated with its coordinates. Fuzzy values, ranging from 0
to 1, represent the uncertainty or imprecision in the exact spatial location of each
point.

Independence Criteria: A set of points is considered independent if the un-
certainties in their coordinates do not lead to contradictions in the spatial rela-
tionships, given a certain tolerance level defined by the fuzzy values. The fuzzy
geometric matroid captures the nuanced independence of spatial points.

Connectivity Exploration: The connected fuzzy geometric matroid investigates
how uncertainties in the spatial positioning of points influence the overall connectiv-
ity of the geographic network. Points with higher fuzzy values for their coordinates
contribute to a more connected spatial network, while those with lower values may
lead to isolated or less precisely defined regions.

Dynamic Spatial Configurations: Fuzzy values associated with point coor-
dinates may dynamically change over time due to factors such as environmental
shifts or sensor imprecisions. The matroid provides insights into how these dynamic
changes impact the evolving structure and connectivity of the fuzzy geometric net-
work.

5. Conclusion

Connectivity, a fundamental concept in both graph theory and matroid theory,
has been explored in the context of graphic fuzzy matroids in this study. We
introduced the concept of connectivity to graphic fuzzy matroids, establishing a
robust framework through the definition of an equivalence relation. This framework
facilitated the development of connected graphic fuzzy matroids, characterized by
their structure in terms of equivalence classes.

Our research has demonstrated that the connectedness of the underlying cycle
matroid is not only necessary but also a sufficient condition for the connectedness
of a graphic fuzzy matroid. Furthermore, we have uncovered additional properties
related to connectedness, supported by illustrative examples.

We have included three practical applications of connected graphic fuzzy ma-
troids. Firstly, in social network analysis, our method proves invaluable in under-
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standing and modeling connectivity patterns within social structures. Secondly,
in environmental reliability monitoring, the application of connected graphic fuzzy
matroids offers a powerful tool for assessing and managing the reliability of environ-
mental systems. Lastly, in geographic information systems, our approach enhances
the analysis and representation of spatial connectivity.

The significance of our results extends beyond theoretical contributions. The
connectivity of graphic fuzzy matroids provides profound insights with diverse prac-
tical applications, ranging from social network analysis to environmental reliability
monitoring and geographic information systems. These applications underscore the
versatility and real-world relevance of our proposed method.
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